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t Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 
1784 Sofia, Bulgaria 

Received 17 August 1992 

AbslracL A local projection technique tar the mathematical construction of pole figures 
on the basis of a Gaussian-shaped orientation distribution function of microclystallites in 
t a t u r e  is presented. The relationship between this [unction and pole figures and some 
results from this technique are shown. 

The direction of the normal hi to the set of scattering microplanes {h i  ICi l i }  cannot 
be k e d  on the basis of a diffraction experiment with texturized samples. This 
drawback may lead to significant errors in the analysis of experimental pole figures 
(PF) by means of series expansion of the orientation distribution function (ODF) 
f(g), defined through a set of Eulerian angles g = ( a , P , 7 )  in the sense of [l], 
and corresponding determination of the series coefficients with the help of PF. This 
substantiates the use of standard distribution functions of orientations [l-31. In 
general, published papers on this matter may be classified as using either the series 
expansion technique [4,5], or discrete methods [6]. This work is an attempt to 
extend the known discrete methods that are pictorial, easier to interpret and involve 
simplified mathematics. 

Examination of recently developed methods, e.g., the method of Imhof employing 
successive iterations [7,8], or the maximum entropy method [9,10], shows that a 
mathematical modelling of pole figures is useful. Therefore, as a first step in our 
investigation we consider the direct projection of PF from standard Gaussian ODF. 
Following the papers of Matthies, Helming and Kunze [ll,12], we substitute for the 
Eulerian angles used to describe the mutual orientation of the coordinate systems 
(lib, k e d  to an arbitrarily chosen microcrystallite and, ICa, k e d  to the sample) with 
their linear combinations 

p ’=+(p )  a = f ( a + ~ )  S = f ( a - y )  (1) 

so that g = [u,p’,S]. 

distance between g, and an arbitrary point g is: 
Let the centre of the Gaussian ODF be g, = [U,,&,, S,]. Then the orientation 

cos(G/2) = cos(pI)cos(P;)cos(~ - a,) + sin(P’)sin(p;) cos(6 - 6”).  (2) 
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We are going to use the angles a ,p ’ ,6  in order to determine the stereographic 
projection of an arbitrary direction of the normal hi to the microplane ( h k l ) ; .  Here 
we make use of a modification of the technique of Cartan [13]. Let us fvr ICa, ICb 
and hi, as is usually done, to a common centre gu = (O,O,O) so that only the mutual 
orientations are of interest First allow ICa and ICb to coincide: the projection of hi 
on the plane parallel to the equatorial plane but drawn through the south pole (see 
figure l), will then be 

P = (2 + iy) / (  4 - z )  (3) 

with R = f the radius of the sphere and I, y, z the coordinates of the intersection 
between hi and the sphere. The rotation of ICb by angles a, 0, y leads to 
transformation of 1.1 according to the expression 

P‘ = (all  + b ) / ( - v p  + a’) (4) 

where 

a = cos(p)exp(-iu) b = sin(p’)exp(i6) ( 5 )  

where a and bare the Cayley-Klein symbols and a* and b’ are the complex conjugates 
a and 6, respectively. The relation between a, p and y, and p’, U and 6 is given by 
(1). The relation between p and the pole p on the equatorial plane is 

p = 2Rz /p  p ,  = Re(2R2/p)  p ,  = Im(2R2/p )  (6) 

P = 1.112 P ,  = Re(hL/2) P ,  = Im(wl2) (7) 

whcn the normal hi lies in the upper hemisphere, and 

when the normal hi is in the bottom part of the sphere. 

Flgurc 1. ?%e projection of h,, p,  an the plane (, 7 and PF projection p an the 
equatorial plane: (a) h, is in the upper hemisphere; ( b )  h; is in the lower hemisphere. 

By substituting (6) or (7) in (4) we get p‘ =PF(O, p,  6). Now we use the Gauss 
ODF [2]: 

f(g) = f (b , i j )  = S,exp(-Lj2/E2) (8) 
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with 

Su(b)  = 2A/[E(1-exp(-~*/4))]. (9) 

Here E = b / 2 m  where b = A& is the full width at half maximum (FWHM) 
of the model ODF. It should be noted here that there is no need to introduce any 
modifications in the ODF taken in the form (8) since we do not apply the series 
expansion technique. We simply calculate the coordinates p: and p b  of the pole 
P' = p'( a, p, y )  = p'( U ,  p', 6 )  by means of (6),  (7) and (4) and assign to this point 
the value of f ( u , p ' , 6 )  calculated from (8). This way we can easily construct the 
pole figure Ph,(y) where y and hi correspond to hi in K ,  and ICb, respectively. 

Figure 2. Using Gaussian-shaped ODF in 
the G-space with 90 = ( O , O , O ) .  I = So.  
So = 10.0, the unreduced PFs (001) and 
(lm).  ( iW),  ( O l O ) ,  and ( O i O ) ,  obtained by 
the local projeclion technique, are shown. 
~ e s t e p s 4 o , 4 p , 4 y a r e S 0 .  For (loo), 

and 0 < p $ 8S0 For (001) 0' < a ,  y < 
360' and no < p < 8 5 O .  The levels are: 20; 
3 0  40; 5 0  70; 100, 200; 300; 320; 350; 380. 

(oio), (ioo) and (oio), -850 $ < 850 

Some details of the projection technique described above were treated in [14]. 
Below, your attention is drawn to some aspects related to the positive answer to 
the question regarding the possibility of constructing mathematically the so-called 
unreduced PF. Following Imhof [7] an unreduced PF is just one of the, all equivalent, 
hi,<. In the case of cubic structures there are six unreduced PFs corresponding 
to the direction [Oal]: (OOl), (OlO),  (lOO), (mi), (OiO)  and (i00). By means of 
our method for local projection we succeed in localizing the reflections from these 
equivalent directions. 

For a Gauss ODF centred at go = (uu,P:,6,) = ( O , O , O )  the reflections (001) 
and (OOi) coincide, but the remaining four reflections are well spaced and therefore 
distinguishable (see figure 2). This implies that the actual PF is an average over these 
reflections, which are expected to appear, summed together. Our results are in good 
agreement with the PFs given in (151. 

This may prove to be useful in reconstructing the ODF by its representation as a 
result of summation of Gauss functions. 

We have carried out a detailed analysis of the influence of the location of the 
centre gu and the FWHM in the PF. We did not encounter any probiems of principle 
in modelling the PF by mixed Gaussian ODFS. A n  example is shown in figure 3 which 
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Fylm 3. Three-dimensional image of the reduced PP (Kll), corresponding to a model 
with huo Gaussian-shaped ODPs with b = S o ,  SO = 10.0 and centred at go = ( O , O , O ) ,  
91 = (0,0,45'). 

illustrates a reduced pole figure constructed from a model with two Gaussian-shaped 
orientation distribution functions. We next intend to apply the Monte Carlo technique 
for determining the set sui, and then to obtain the corresponding maximum values 
of the Gauss functions Sui, and FWHMS bi with the help of an appropriate iteration 
method or by a direct scaling method the in case where rigorous criteria are found. 
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